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Within the scope of the three-dimensional theory of homogeneous incompressible 
inviscid fluids, this paper contains a derivation of a system of equations for propa- 
gation of waves in water of variable depth. The derivation is effected by means of 
the incompressibility condition, the energy equation, the invariance require- 
ments under superposed rigid-body motions, together with a single approxima- 
tion for the (three-dimensional) velocity field. 

1. Introduction 
Although the classical nonlinear three-dimensional theory of an ideal elastic 

body, which includes the theory of an inviscid fluid, is well understood and 
accepted, it is notoriously difficult to obtain exact solutions of the resulting 
equations except in rather special situations. In  the case of the propagation of 
water waves under gravity, governed by the incompressible inviscid fluid 
theory, the difficulties are due to the nonlinear inertia terms and the nonlinear 
boundary condition over an unknown surface. In  view of these difficulties and 
because those aspects of the propagation of water waves of especial interest are 
inherently two-dimensional in character, various methods have been evolved for 
replacing the (nonlinear) three-dimensional theory of water waves by a two- 
dimensional theory. The procedure is approximate and is singular in the sense 
that the order of the partial differential equations is usually reduced. One well- 
known method of approximation is to introduce one or more non-dimensional 
parameters which in some sense may be regarded as small. Approximations are 
then obtained by what is usually called asymptotic expansion, and lead to equa- 
tions which have received wide acceptance. The methods appear to be powerful, 
systematic and compelling; however, this is somewhat deceptive as the methods 
involve a scaling of certain variables which amounts to a priori special assump- 
tions. Proof is usually lacking that the expansions obtained are asymptotic or 
unique or that solutions of the resulting equations are asymptotic expansions of 
corresponding solutions of the three-dimensional equations. Such criticisms do 
not underrate the value of these expansion procedures since the problems posed 
are quite complex. It may be that eventually the obstacles can be overcome and 
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the problems can be solved by proper mathematical analysis, but meanwhile we 
are usually content to make use of the approximations mentioned above in 
special circumstances. 

In  view of the incomplete nature of the methods of asymptotic expansion in 
terms of small parameters and of other approximation procedures, an attempt 
has been made in recent years to approach the subject from another point of 
view, namely via the theory of directed fluid sheets based on a two-dimensional 
continuum model called a Cosserat surface.t A direct two-dimensional theory 
of this kind was recently employed by Green & Naghdi (1976) to construct a 
theory for wave propagation in water of variable initial depth. The resulting 
nonlinear differential equations, which include the effect of surface tension, were 
obtained in detail for one-dimensional flow, although the two-dimensional equa- 
tions were given previously (Green, Laws & Naghdi 1974) for a fluid over a 
horizontal bed. Of course, these papers include some results from the three- 
dimensional equations in so far as t.he identification of the inertia coefficients 
and the specification of forces on the free surface of the water wave are concerned, 
but the main developments (Green et al. 1974; Green & Naghdi 1976) are based on 
a two-dimensional theory of a directed medium. It is perhaps worth recalling 
here that with regard to the relevance and applicability of the direct formulation, 
the papers cited include some detailed studies of a number of two-dimensional 
problems of inviscid fluid sheets, as well as some comparison with other work on 
the subject. For example, it  was shown that the derived nonlinear differential 
equations admit a solitary-wave solution which is the same as that attributed by 
Lamb (1 932, $252) to Boussinesq and Rayleigh. Moreover, comparison with such 
equations as that of Korteweg & de Vries (KdV) indicated that the derived 
equations have a wider range of applicability (Green et al. 1974), apart from the 
advantage that they are derived from a complete set of integral conservation 
laws. Additional specific examples discussed previously (Green & Naghdi 1976) 
include a class of steady two-dimensional flows in fluid whose depth may change 
from one (finite) constant level to another and the related problem of hydraulic 
jumps. 

The chief purpose of the present paper is to see if the same system of equations 
may also be derived in some systematic way from the three-dimensional equations 
of classical fluid dynamics alone. The derivation given here differs from similar 
derivations of equations for wave propagation in water of variable depth using 
asymptotic expansion techniques of the type mentioned above. Among the 
latter, reference may be made to the papers by Peregrine (1967, 1972), by Grim- 
shaw (1970) and by Johnson (1973). Thus, in the following sections, we start with 
known equations of incompressibility and energy in the three-dimensional theory 
of a homogeneous incompressible inviscid fluid. By using these equations and 
invariance requirements under superposed rigid-body translation of the whole 
fluid, together with a single approximation for the velocity field, we derive a 
system of field equations for water waves without making any further approxi- 
mations. When specialized to unidirectional flow, these equations become identi- 

t Background information concerning the theory of a Cosserat surface can be found in 
the article by Naghdi (1972), which contains detailed applications to elastic shells. 
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cal with those obtained by Green & Naghdi (1976) via a direct two-dimensional 
theory. Also, the nature of the linearized version of the resulting equations and 
how they compare with those which follow from the work of Peregrine (1 967) are 
briefly discussed. 

In  the present derivation from the three-dimensional equations, the kine- 
matic assumption from which the approximate expression for the velocity field 
follows is introduced in terms of Lagrangian co-ordinates [see equation (4.6)] but 
subsequently [following (4.12)] we employ Eulerian co-ordinates and express all 
quantities in their Eulerian (spatial) forms. The approximation adopted for the 
velocity field [see (4.9)] is equivalent to assuming that its vertical component is a 
linear function of the vertical co-ordinate? x (of a fixed rectangular Cartesian 
co-ordinate system x, 3, z )  in the present configuration and that its horizontal 
components are independent of z ;  this form enables us to satisfy exactly the con- 
dition of incompressibility. In  this connexion, it should be remarked that in the 
ordinary derivation of the KdV equations (e.g. by asymptotic expansion pro- 
cedures) the horizontal velocity depends on z ;  but the KdV equations also follow 
by approximation from the general equations of this paper (or the corresponding 
differential equations obtained by a direct approach), even though the horizontal 
velocity in the latter equations does not depend on x .  This is because our method 
of approach and derivation is very different from that usually pursued in the 
literature on water-wave theory. Instead of finding an approximation to a system 
of differential equations in our approach, which involves an approximate velocity 
field, we satisfy the incompressibility condition, the boundary conditions a t  the 
free surface and a t  the bed and an energy equation in integral form without 
further approximation. The assumed velocity field allows for rotational flow in 
horizontal planes but rules out simple shear flows in vertical planes without re- 
moving all the vorticity components in these planes. Our basic kinematic assump- 
tion, which also reflects the nature of our approximate velocity field, is likely to 
render the resulting theory appropriate for propagation of fairly long water 
waves. 

2. Preliminaries and notation 
Let the particles of a three-dimensional continuum be identified by a convected 

(Langrangian) co-ordinate system Oi. Covariant and contravariant base vectors 
at points of the continuum a t  time t are denoted by gi and gi with corresponding 
metric tensors g i j  and g i f .  Thus 

gii = g i . g j ,  gsf = gi.gj, g.gj  = a:, gi  = a p p ,  p = p(oi,t),  (2.1) 

where p is the position vector of a typical particle Oi, 8; is the Kronecker delta 
and Latin indices take the values 1 , 2  and 3. The velocity vector V* at time t is 

v* = p, (2.2) 

t Adoption of the form of the velocity field in (4.9) is equivalent to assuming that the 
vertical velocity is linear in the Lagrangian co-ordinate O5 and hence linear in the rectangu- 
lar Cartesian co-ordinate z. 
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where a superposed dot denotes the material time derivative holding 8i fixed. 
An element of volume dv is given by 

dv = g3deld82d83, 9 = detgii. (2.3) 

The stress vector t across a surface whose unit normal is n can be put in the form 
(see Green & Zerne 1968, p. 60) 

(2.4) t = g-&,Ti, n = ni gi = mi&, = g37iigi, 

and 7ii is the symmetric contravariant stress tensor. 
The parametric equation 83 = 0 defines a surface d in space at time t ,  which 

we assume to be smooth and non-intersecting, the position vector of any point of 
6 being given by 

r = r(81, @, t )  = p(81, P , O ,  t ) .  (2-5) 

Let the continuum be bounded by the surfaces 

83 = a, O3 = b (a < O3 < a), (2.6) 

where a and b are constants. We assume that the surfaces (2.6)1,8 do not intersect 
themselves, each other or d and are such that d lies entirely between them. 

3. Incompressible inviscid fluid 
Suppose that the continuum consists of an inviscid incompressible homo- 

geneous fluid with constant mass density p* under a constant gravity fieldt g* 
parallel to the unit constant vector - e3. Then 

divv* = 0 or g4 = 0. (3.1) 

Also, if p* is the pressure, then 
t = -p*n. 

Let an arbitrary material volume of the continuum occupy a region B* a t  
time t and let 8B* designate the closed surface of B*. Then the conservation of 
energy for every material volume a t  time t can be stated as 

p*(gv*. v* + g*e3. p + e*) dv = lT0p*r* d;v -IaTo (p*v* + q*) . n da, (3.3) 
d 
z].* 

where r* is the rate of supply of external heat per unit mass, e* is the internal 
energy per unit mas8, q* is the heat conduction vector and da is an element of 
area. Also, making use of invariance conditions under superposed rigid-body 
motions of the whole continuum, g* takes the form 

q* = - ~ ( 8 ,  grad 8. grad 8) grad 8, (3.4) 

where 8 is temperature and K is a scalar function. In  addition, for an inviscid and 
incompressible fluid, we assume that e* = a*(@. With the use of invariance 

t To avoid ambiguity with the notation employed in (2.3), we use g* (instead of the 
usual symbol g) for gravity. 
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conditions under superposedrigid-body motions the equation of linear momentum 
can be derived from (3.3) in $he form 

With the help of the local equation resulting from ( 3 4 ,  the energy equation 
(3.3) can be reduced to 

(3.6) 

In  the rest of this paper we restrict attention to isothermal motions so that 8 is 

p*r - divq* -p*i* = 0. 

constant. It then follows from (3.4) and (3.6) that 

q * = O ,  r * = O  (3.7) 

and that e* is a constant. Moreover, if 8 is everywhere continuous, then (3.3) 
reduces to 

Equation (3.8) is a statement of the law of conservation of energy for iso- 
thermal motions of an incompressible inviscid fluid. It should not be confused 
with similar expressions representing an energy theorem which can be derived in 
the context of the purely mechanical theory of an incompressible inviscid fluid. 

I n  subsequent sections, our development will be based solely on the energy 
equation (3.8) and the incompressibility condition (3. I). 

4. Water of variable depth 

pressible fluid moving over a bed specified by the equation 
We suppose that the continuum consists of an inviscid homogeneous incom- 

P = xe, + ye2 + a@, y) e3, (4.1) 

where the ei form a constant orthonormal system of vectors. The surface of the 
fluid is specified by 

I n  (4.1), a is a given function of (5, y) but P in (4.2) depends also on t .  At the sur- 
face (4.2) of the stream there is a constant normal pressure po and a constant 
surface tension T. At the bed the (unknown) pressure ji depends on x, y and t .  
Thus the fluid moves with the surface (4.2) and at this surface 

P = xe,+ye,+P(z, y, t )  e3. (4.2) 

P* = P o - %  (4.3) 

where 

At the bed (4.1) the normal velocity of the fluid is zero and 

where jj is to be determined. 
P" = F(x, y, t ) ,  

16 

(4.4) 

(4.6) 

FLM 78 
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For the motion of the fluid under consideration, which is governed by the 
theory of $$2 and 3 subject to appropriate boundary and initial conditions,? it 
is required to determine v* or p (and the pressure 23). Since exact methods for 
finding p are not known in general, other procedures must be adopted. 

Under suitable continuity assumptions in any bounded region of values of 
O3 such as (2.6), the vertical component of p can be represented to any required 
degree of approximation by a polynomial in O3 which can be differentiated once 
with respect to 8 3  and twice with respect to 01, O2 and t .  We assume that the 
vertical component of p is given approximately by a linear function of 03; this is 
equivalent to assuming that the vertical velocity is a linear function of the 
vertical co-ordinate in the present configuration a t  time t .  If we wish to satisfy the 
condition of incompressibility (3.1) exactly, then i t  is consistent to assume that 
the horizontal components of p are independent of 03.$ Thus, for the motion of 
the fluid between the surfaces (4.1) and (4.2), we assume that p is given approxi- 
mately by $ 

where the surfaces (2.6)1,2, or (4.1) and (4.2), correspond to 8 = T Q and 

p = r+69e3 (8 = 83), (4.6) 

(4.7) 

01 = @-& p = @ - t + q 5 .  (4.8) 

r = xe, + ye, + @e3. 

In  (4.6) and (4.7), x, y, @ and q5 are functions of 01, O2 and t ,  and 

Adopting (4.6), we now use only the exact three-dimensional equations (3.1) 
and (3.8) and the exact boundary conditions (4.3) and (4.5). 

The velocity vector v* corresponding to (4.6) is 

v* = v+8w = uel+ve2+(h+8w)e3, (4.9) 

v = i-, w = we3, 

where u =x, v = y ,  A = $ ,  w = d .  (4.10) 

From (2.1) and (4.6) it follows that 

94 = 9 a(%, !/)/a(@, 0,) (4.11) 

and the incompressibility condition (3.1) becomes 

(4.12) 

In  subsequent operations we take x and y as independent (Eulerian) variables 

ti = u,+uu,+vu,, (4.13) 
t The boundary conditions are given by the kinematic conditions over the surfaces 

(4.1) and (4.2), together with the condition (4.3) for the pressure at  the free surface, as well 
as suitable conditions over the remaining boundary. 
1 We could also include terms proportional to Os representing a linear shear flow but we 

omit these at  present. 
§ The use of the symbol 6 in (4.6) and in the remainder of t,he paper should not be con- 

fused with the temporary use of the same symbol (for a different quantity) in $3.  

instead of the Lagrangian variables O1 and 8,. Then, for example, 
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where the subscripts denote partial differentiation. Also, (4.12) reduces to 

ux+v,+5 = 0, w = $4 = 4 = $t+u$,+vq& (4.14) 

and from (4.11) and (2.1) we have 

$g3 = - (@x + 6 4 x 1  e ,  - w, + 66,) e2 + e3. (4.15) 

We next use the expressions (4.6) and (4.9) in the energy equation (3.8). For 
this purpose we suppose that 8" is the region bounded by the surface8 (4.1) and 
(4.2), i.e. by 8 = f 8, and by a closed cylinder defined by an equation of the form 

f(61,62) = 0. (4.16) 

Let an arbitrary material surface 6 = 0 occupy a region B at time t and let a 9  
denote the closed boundary of 8. Further,? let 8 9 ;  refer to a part of W* 
specified by the cylindrical surface (4.16), so that aBz = a 9 *  on 8 = 0, and let 
i 3Bzc  = aB* - 8 9 ;  stand for the complement of a9: in 89". 

Now, with the help of (4.3), (4.8) and (4.15), at the surface 8 = 4 we have 

p*nda = p*gtg3d131d62 

(4.17) a@ Y) 
ap' ,  02) 

= ( p o - q )  ( -/3xe,-,3ve,+ e ) - d61d82 

and similarly at the bed of the stream 0 = - 4 

p*nda = -j3( -axe,  -a,e2 + e3) ~ a(x3 y) dB1 d82. (4.18) 

Also, the integral on the right-hand side of (3.8), when evaluated over the surface 
(4.16), becomes 

a(81, $ 2 )  

where (4.20) 

With the help of (4.6), (4.9) and (4.17)-(4.20), the energy equation (3.8) re- 
duces to 

x ( -Bx u -/3, v + h + Sw) - F (  -ax u - a, v + h - +w) 1 dx dy - J p(udy - v dx). 

(4.21) 

This equation and (4.8), (4.10) and (4.14) constitute the basic equations of the 
present theory. It should perhaps be emphasized that our development depends 
on only one assumption, (4.6), along with the two accepted exact equations 
(3.1) and (3.8) from three-dimensional theory. The resulting equations are, 
however, not yet sufficient for a complete theory. We now show how additional 

t The terminology and related development leading t o  (4.19) are similar to  those em- 
ployed in shell theory derived from the three-dimensional equations; see J 11 of Naghdi 
(1972). 

8 9  

16-2 
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equations may be deduced from (4.21) using only invariance considerations 
under superposed rigid-body motions which are well established in the three- 
dimensional theory. 

Using a fixed frame of reference, we assume that a rigid-body translational 
velocity is imposed on the fluid (and its boundaries). Thus we assume that x, y ,  
+ and v* are replaced by x ,  y ,  4 + k, t and v* + IC, e,, where the k, are constants 
(and a: and /3 are replaced by a + k3 t and P+ k3 t ) .  We assume that this rigid-body 
motion does not affect the presswep.? Then, from (4.21), we have 

d zl94p*+[(u + k J a  + (v+ k2)2 + ( A  + k , ) 2 + & u 2  + 2g*(++ k3t ) ]  d x d y  

= - J, [(Po - q)  { - P X  (u + k,) - P, (v + k,) + + k, + 4 4  

- F{ - ax (u + k,) - ay (v + k,) + A + k, - 4w}] dx d y  

-ja,P@ + k,) dY - (v + k2) dx} (4.22) 

for all constant values of the k+, the remaining quantities in (4.22) being inde- 
pendent of the k,. From (4.21) and (4.22) it follows that 

(4.23) 

(4.26) 

The local field equations can now be obtained from (4.23)-(4.26) under suitable 
smoothness assumptions. The first of these, which follows from (4.23), is 

d +4bX +vJ = 0, (4.27) 

and is identical with (4.14). The remaining three, deduced from (4.24)-(4.26), are 

P*+U = -Pa! +@o-q)Px-Fax~ (4.28) 

(4.29) 

(4.30) 

With the help of (4.27)-(4.30) the local equation corresponding to (4.21) reduces 
to 

2ZP*+@ =PI4-4-@o-q+F) .  (4.31) 

The derived field equations (4.27)-(4.31) correspond to consequences of the 
conservation laws after the latter have been suitably integrated with respect to 

t Although this is the key invariance assumption it is one which is widely accepted. 
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8% equation (4.27) is a consequence of the integrated conservation of mass (4.23), 
the three equations (4.28)-(4.30) are consequences of conservation of linear 
momentum in the z, y and z directions, associated with the velocity components 
u, v and h of v* in (4.9),, which are independent of the vertical co-ordinate z, and 
(4.31) represents conservation of linear momentum in the z direction, associated 
with the part of the velocity v* which is linear in z. The field equations (4.14) 
and (4.28)-(4.31), together with (4.8), with a specified, as well as the relations 
(4.8), and (4.10), are the basic equations from which we determine the functions 
u, v, 9, $, p and p.  For unidirectional wave propagation in the x direction, these 
equations reduce to those obtained previously (Green & Naghdi 1976) by a 
direct two-dimensional approach. 

In  the derivation of the field equations (4.28)-(4.31), we have not imposed any 
condition that the fluid motion should be irrotational. In  other existing develop- 
ments of the water-wave equations (from three-dimensional theory), this condi- 
tion can only be satisfied approximately. Here the velocity field (4.9) rules out 
simple shear flows in the x, z and y, z planes but does not demand that the vorti- 
city components in the z, y plane be zero. On the other hand, consistent with 
(4.9), the vorticity component perpendicular to the x, y plane could be zero, so 
that the flow could be irrotational in this plane if we impose the additional con- 
di tion 

uy -vz = 0. (4.32) 

Before closing this section, we make one other observation concerning a first 
integral of (4.28)-(4.31) when the motion is steady and not necessarily irrota- 
tional. Let 

H = Q ~ * ( U ~ + V ~ + A ~ + & W ~ + ~ ~ * $ )  +PI$. (4.33) 

Then, with the help of (4.8), (4.10) and (4.27)-(4.31), it may be verified that 

9H = $(Nt+ a x  + VH,) = Pt + ((I -Po) 9t. (4.34) 

Alternatively, (4.34) may be deduced directly from the energy equation (4.21). 
When the motion is steady and u, v, A, w, p ,  q, 9 and $ are functions only of 
x and y, then pt and q5t vanish and we have a Bernoulli type of first integral of the 
equations of motion of the form 

where F is an arbitrary function of 81 and 02. When the motion is unidirectional 
with v = 0 and N a function only of z, then (4.35) reduces to 

H(x) = &*(u2 + h2 + -$w2 + 2g*$) +p/$ = const. (4.36) 

* P * ( U ~ + V ~ + ~ ~ + & W ~ + ~ ~ * $ )  + p / $  = F(B1, 02), (4.35) 

5. Linearized equations 
Here we obtain the version of the differential equations derived in the previous 

section in which the various results are linearized about an equilibrium position. 
We setpo = Oin (4.28)-(4.30) without loss in generality, and limit the discussion 
to flows in the x direction only so that, from (4.8), (4.10) and (4.27)-(4.31), we 
have 

(5.1) 
!? = w z z m  + P 3  3’2, 9t + (U9)Z = 0 

ua, = h - iw, w = $t + u$,, 
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( 5 4  

and p*$(ut +uux) = -Px - qPx -Fax, 

p*$(ht +uhx) - p*g*$+q+l;i, 
T?z p*$2(Wt + uwx) = P - 8$(1, - a ) .  

In  these equations a = a(x) and all other variables depend on x and t .  If the fluid 
is in equilibrium with a level surface 1 = Po, a constant, then 

(5.3) 1 u = h = w =  q = 0, 9 = W ) ,  4.) +W) = Po, 
1, = p*g*h, p = ap*g*h2. 

Following the usual procedure we set 

$ = h+$', /3 = P0+/3', 1, = p*g*h+1,', p = ap*g*h2+p' (5.4) 

and, after substitution in (5.1) and (5.2), retain only terms linear in $', ,4', 1,', p', 
u, h and w and their space and time derivatives. Hence we obtain 

w = -hax, h = -+hux -ahx, q = T$Lx (5.5)  

(5.6) 1 
and $;+(hu), = 0, p*hut= -p:+1,'hX, 

p*h& = 1,' -p*g*$' + T$:,, 
1. 1 z p  *h2w t - - P' - &1,' + $Th$j,- &*g*h$'. 

Elimination of p' ,  1,', $', h and w yields an equation for u of the form 

(1 - WXX) utt - hhxuttx - +h2UttXX = g*(hu)xx - ( T / P * )  (hu)xxxx- (5.7) 

When the equilibrium depth h of the stream is constant this equation reduces to 
one given previously (Green et al. 1974). We also observe that, if the equations 
obtained by Peregrine (1967) for waves on water of variable depth are linearized 
about an equilibrium state, then we recover (5.7) in the absence of surface tension. 
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